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ABSTRACT 

In precise industrial measurement by close-range photogrammetry, it is common not to place control points but place 
only scale controls in an object space. This causes the rank defects of seven or six (when scale controls exist) in 
observation equations. For solving the least squares problem to determine object points coordinates, appropriate 
constraints on parameters are necessary to compensate for rank defects. A free network to constrain the parameter 
space with inner constraints is a very common method. Basis vectors in the null space of observation equations can 
be obtained in a numerical or analytical way. But the analytical vectors are valid only for infinitesimal rotation angles. 
For finite angles, the rotation matrices lose orthogonality in the iterative least squares process. This paper discusses 
a method to obtain the exact solutions by applying the sequential corrections to solutions to keep their orthogonality. 
And the paper further compares the solutions by this semi-analytical way with ones by numerical methods in terms of 
computation time and precision. The latter includes minimal constraints and the generalized inverse. 

1. Introduction 

In 3-D precise industrial measurement by close-range 
photogrammetry it is common not to place control points 
in the object space but set only scale controls. This leads 
to six rank defects (or seven in the case of no scale 
controls) in observation equations and normal equations. 
In other words the null space of the design matrix has six 
or seven dimensions, in which we can choose basis 
vectors freely. The most probable values of parameters 
are determined uniquely by the least squares unless we 
pose any overconstraints on the real space. But their 
variance and covariance matrix varies with the basis 
vectors we designate. 

There are two ways to cope with rank defects. One is to 
add artificial minimal observation equations in the real 
space, while the other is to set artificial bases in the null 
space. The most common way for the former is to 
constrain six (or seven) coordinates of object points with 
large weights (minimal constraints). Of course it is 
possible to constrain the same number of exterior 
orientation parameters . The minimal constraints can be 
regarded as suppressing six (or seven) column vectors 
from observation equations or equivalently as setting the 
same number of independent unit basis vectors in the null 
space. 

The latter way is called a free network. Most typical one is 
to constrain the null space by adding six (or seven) 

17 

orthogonal independent basis vectors to observation 
equations as inner constraints. This is equivalent to 
using the Moore-Penrose generalized inverse, which 
produces the minimum norm least squares solutions. 

We can alternatively constrain only object points 
coordinates, rather than the entire parameters. 
Geometrically it constrains the position of a centroid and 
the rotation of points around the centroid and their 
distance from the centroid if distance controls exist. 
Since this solution minimizes the mean variance of 
co-ordinates of object points, it is often used as an index 
of precision of object points coordinates(Fraser, 1982). 
But it should be noted that this is obtained at the cost of 
swelling covariance between other parameters (exterior 
orientation parameters) and between object point 
coordinates themselves. 
The intrinsic precision of parameters is given by their 
variance covariance matrix. It varies with posed inner 
constraints. Thus the difference of the precision is only 
appearance. If the network geometry is strong enough, a 
model similar or solid to the real space is constructed. 
The precision is determined by the network design (first 
order design) . In this respect the mean variance of 
object points coordinates of the free network solution 
constraining equally the entire parameter space should 
be used as one number index of measurement precision. 

There are two ways to calculate the Moore-Penrose 
generalized inverse or a pseudo-inverse; one is 



numerical and the other is analytical. Numerically basis 
vectors can be calculated by singular value 
decomposition(SVD) of a design matrix. On the other 
hand Granshaw showed analytical basis vectors 
Granshaw, 1980). For this purpose he defined a rotation 
matrix as a sequential product of small rotations, which is 
different from conventional Eulerian angle based matrix 
representation. But his expressions are valid only for 
small rotation angles, and the linearized collinear 
equation does not keep orthogonality of rotation 
matrices. Thus in the process of iterative least squares, 
rotation angles go apart from true values. 

We extend this to be more applicable to general rotation 
angles by introducing successive correction of rotation 
matrices to keep orthogonality using the SVD technique. 
From practical point of view, we proceed with discussion 
using Eulerian angles around fixed axes, although other 
angle parameters, like Eulerian angles around rotating 
axes or quaternion based representation are available 
with minimal modification. 

In Paragraph 2 general theory of free network is outlined 
to make the discussion self-contained. In Paragraph 3 
the construction of semi-analytical basis vectors is 
discussed. And Paragraph 4 gives an experimental 
result on the properties of solutions by free networks by 
different computation methods as well as minimal 
constraints. 

2. Free Network Solutions in Close-Range 
Photogrammetry 

Assume that an object space is multiple photographed by 
a camera, interior orientation parameters of which are 
stable but unknown. 

A system of observation equations (linearized collinearity 
equations together with, if any, distance observations) is 
expressed by 

v +A1x1 +A2x2 +A:ix3 =e 

or 

v+Ax=e w 

w (2.1) 

(2.2) 

wherex1 (n 1 x 1), x 2 (n 2 x 1), x3 (n3 x 1) are vectors of 
exterior and interior orientation parameters and object 
points coordinates. v (m x 1) is an error vector, with m 
being the number of observation equations, A 1 (m x n1 ), 

A2 (mXnz), A3 (mxn 3 ) are respectively design matrices, 
e1(m x 1) is a discrepancy vector and w (m x m) is a 
weight matrix. The total number of parameters is 
n=n1+n2+n3. 

eq.2.2 has rank defects of six or seven (more generally r 
hereafter). We choose an arbitrary matrix, B (n x r), 

removing the rank defects; 

(2.3). 

Since A2 has no rank defects, B2 is set to 0. And let a 
matrix of basis vectors of the null space of A be denoted 
by G (n xr), which satisfies 

(2.4). 

And when we constrain the parameters x with B as 

(2.5) 

the least squares solutions of eq.2.2 is given with a 
Lagrangean multiplier J by (Grafarend and Sanso, 1985) 

(2.6) 

where ~TWA L- is a reflective symmetric generalized 

inverse, which is explicitly calculated by 

~r WAL- = ~r WA+ BBr }-1 -c(cr BBr c }-1cr 
(2.7) . 

The a posterior variance of observations with weight unity 
and the variance covariance matrix of the most probable 
values of parameters, ~x, is 

, 2 vT Wv 
a ---------

o - rank(W) - rank(WB) (2.8) 

~x =~xl }= a/~rwAL- (2.9) . 

We assume the constraint matrix Bis given by the form 

B=PG (2.10) 

where P, a diagonal matrix with elements o or 1, gives 
constraints on specific parameters . The solutions x of 

eq.2.6 minimizes a weighted norm xT Px, or minimizes 
the mean variance of parameters specified by pas 

am 2 = trace{ (Ar WAL- P} / rank(P) (2.11 ). 
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When Pis taken to be a unit matrix, ~r WA) - becomes 
rs 

the Moore-Penrose generalized inverse or the pseudo 

inverse ~r WA r. Geometrically it produces solutions 

with all the parameters constrained with loose and equal 
weights. 

It is very common in industrial measurement to set the 
matrix p so as to constrain only object points 
coordinates, because only object points are of major 
concern in measurement. The solutions minimize the 
mean variance of object points coordinates. And it is 
often used as the precision of object points coordinates. 
But its minimum variance property is only apparent, and 
we have no reason to consider it better than the value for 
P=I (all the parameters are equally constrained). 

3. Expression of Analytical Basis Vectors 

To extend Granshaw(1980) to be applicable to finite 
angles, we propose a semi-analytical method, which 
corrects the rotation matrices to strictly orthogonal ones 
every after the least square solutions are obtained. 

The collinearity equation for an object point P(X, Y, Z) and 
its image pointp(x,y) is expressed by 

N 

} 
Fx =x +ox+ c-L = 0 

D (3.1) 

E'y 
Ny 

=y+oy+c- =0 
D 

where ox, oy are corrections to lens distortions and c is 
a camera distance. Nx, Ny and Dare defined by 

Nx = (X -X0 )m11 + (Y -Y0)m12 + (Z -Z0 )m13 

} Ny = (X - Xo )mz1 + (Y -Yo)m22 + (Z - Zo )mz3 

D = (X -Xo)m31 + (Y-Yo)~z + (Z -Zo)n33 

(3.2) 

where (Xo, Yo, Zo) is a perspective center and (m;j) is a 
rotation matrix. 

There are many ways to represent rotations. We adopt 
here azimus 0 , elevation ¢> and rolling K, , because it is 
easy to give approximations in practical situations (See 
Fig.1). With them, a rotation matrix Mis expressed by 

(3.3), 

where 
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cos I( sin/( ~] M = - sin I( COST( 
K 

0 0 

M, ·[~ 

0 -s~n~] COSlp {3.4). 

sincp cos<p 

cos0 0 -sin 0 

Me= 0 1 0 

sin 0 0 cos0 

z 

Fig.1 Coordinate System 

Usually rotation angle 0 , for instance, is updated in a 
addition form; 

0i+ 1 = 0i + 110 (3.5). 

To find orthogonal vectors to a design matrix, we define 
the update of a rotation matrix in a product form; 

Mi+l =Mi· 11M {3.6). 

where 

1 /11( -110 

11M = -/11( 1 !1<p (3.7). 

110 -Mp 1 

LI 0, LI ¢> and LI/(, is correction angles. Not that eq.3. 7 
and the multiplication order in eq.3.6 are different from 
ones shown by Granshaw(1980), because he postulated 
conventional Eulerian angles around rotating axes. 

From eq .3.6, we obtain directly 



aM r3 
0 ~11] 

B0 = m23 0 --m21 

m33 0 --m31 

[o -,.,, 
m12 l BM 

Bcp = o -m23 m22 

0 -m]3 m32 

(3.8). 

-m12 mu 0 
BM 

-mzz m21 0 
BK 

-m]z m31 0 

Using eq.3.8 as derivatives in linearizing eq.3.1, we get a 
system of observation equations for the entire image 
points; 

(3.9) . 

An orthogonal matrix G= [G1 0 G3] to the design matrix A= 

[A1 0A3 ] of eq.3.9 is given by the form; 

1 0 0 0 0 0 

0 1 0 0 0 0 

0 0 1 0 0 0 
GT_ 

1 - 0 -Zo Yo 0 1 0 

Zo 0 -Xo 1 0 0 

-Yo Xo 0 0 0 1 

0 0 0 

R is determined from the SVD of S as 

Then 

(3.13). 

Note that if distance controls are placed in the object 
space, its linearized equation is not orthogonal to the 
matrix G in eq.3.10. Therefore the least squares 
solutions do not minimize the mean variance. 

4. Numerical Basis Vectors and 
Moore-Penrose Generalized Inverse 

Basis vectors of the null space of a design matrix A are 
numerically constructed by singular-value-decomposing 
A' 

(4.1 ), 

where uand vare n x n orthogonal matrices and 
A ((n-r) x (n-r)) is a diagonal matrix with singular values 
as diagonal elements . Let the transformation matrix from 
right side, v, be expressed with n column vectors as 
V =[vi, ,, Vn_, Vn-r+l ... vn] ' and their last r vectors 
Vn_r+l '" Vn make baSiS VeCtOrS in the null Space. ThiS 
calculation is very expensive because of large size of a Xo Yo 

1 0 

0 1 

0 0 
T 

G3 = 0 -z 

0 

0 

1 
y 

Zo 
(3.10). design matrix, whereas the semi-analyt ical method 

solves basis vectors easily and the extra cpu time is 
negligible. But in the case of existence of scale 
controls, only the numerical method is available as the 
strict solution. 

z 0 -x 
-Y X 0 

X y z 

Geometrically G1 fixes the centroid of camera positions 
and rotations around the centroid, while G3 fixes those of 
the object space. 

The solutions must be updated by iteration. But in the 
course of updates, the rotation matrix M loses 
orthogonality, since eq.3.7 is not precisely orthogonal. 
To prevent this, we correct M to the nearest orthogonal 
one in terms of matrix norm. In general the orthogonal 
matrix R nearest to any matrix S minimizes the norm 

trace{ (R -sl (R -s)} 
= trace{ RT R - 2ST R + ST s} 
= 3 - 2trace{sT R} + trace{ ST s} 

(3.11 ). 
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Further the Moore-Penrose generalized inverse is 
calculated from eq.4.1 as 

(4.2) . 

5. Experimental Comparison 

The methods mentioned above were applied to a camera 
calibration experiment. In the following the properties of 
solutions and CPU times are compared. The object 
space is a square steel plate 750mm wide, on which 52 
steel rods of different height from O through 300mm are 
erected. The camera used is Kodak DCS420 (color, 1,012 
x 1,524pixels) with a Nikon 28mm lens. Nine photographs 
were taken at various positions from 2-3m off the plate 
with K rotated by 90deg. at every exposure. The number 
of image points is 461 and the number of observation 



equations is 922. No scale controls were placed. Interior 
orientation parameters we employed are camera 
constant, c, principal point coordinates, xp,Yp• radial and 
tangential lens distortion parameters, K1 , K2 and P1 , P2 . 

The dimensions of unknown vectors are nl =54 (exterior 
orientation parameters), n2= ?(interior orientation 
parameters) and n3 =156 (object points coordinates). In 
total n=n1+n2+n3= 217. 

The solutions are calculated for the following cases of 
rank defect compensations: 
(A) Update of rotation matrices in the product form 
(eq.3.6) 
(A 1) Inner constraint with analytical basis vectors 

G=[G1 0 G3], which produces the minimal norm 
solutions for all the parameters. 

(A2) Inner constraint with analytical basis vectors 
G=[G1 0 0], which produces the minimum norm 
solutions for exterior orientation parameters. This has 
no practical meanings, but was executed for 
comparison. 

(A3) Inner constraint by analytical basis vectors 
G=[0 0 G3], which produces the minimum norm 
solutions for object points coordinates. 

(A4) Inner constraint by numerical basis vectors, which is 

expected to produce the same result as A 1 . 
(A5) The same as A 1 except that no orthogonality 

corrections were made to rotation matrices. 

(B)Update of rotation matrices in the conventional form 
(update of angles in addition) (eq.3.5) 

(B1) Use of the Moore-Penrose generalized inverse 
(B2) Minimal constraints on seven object points 

coordinates with large weights 

All observations were normalized for calculation stability. 
Coordinates of object points were divided by a typical 
distance from the camera to object space. Image 
coordinates and camera parameters were divided by a 
nominal focal length. Initial values of object points 
coordinates were quoted from a design sheet of the 
calibration space. The adjustments in every case 
converged in four times iterations. 

The table 1 shows the list of mean variances 
In all results the inner orientation parameters were 
restored stably as invariants. It means that any 
constraints are equivalent for camera calibration, and the 
restored space is similar to the actual space. 

Table 1 Results of the experiments 

-
a image 

unit [µm] 

(A1) 0.402124 

(A2) 0.402124 

(A3) 0.402124 

(A4) 0.402124 

(A5) 0.402204 

(B1) 0.402124 

(B2) 0.402124 

- - - -
a 2x a 2x1 a 2x2 a 2x3 

[mm2] [mm2] [mm2] [mm2] 

0.015315 0.013165 0.000022 0.002126 

0.049208 0.011333 0.000022 0.037853 

0.074936 0.074419 0.000022 0.000495 

0.015315 0.013165 0.000022 0.002126 

0.015321 0.013170 0.000022 0.002127 

0.017631 0.015354 0.000022 0.002254 

0.077691 0.076623 0.000022 0.001047 

a image: standard deviation of errors in image plane 

* 

* 

* * 

a 2x=trace (Sx )In 

a 2x1 =trace(Sx1)/n1 

a 2x2=trace(Sx2)/n2 

a 2x3=trace(Sx3)/n3 
- -

a x3=sqrt( a 2x3) 

* 
* : variance covariance matrix 

CT: cpu time shown in ratio to (A 1) 
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-
ax3 CT 

[mm] [ -l 

0.0461 1.000 

0.1946 0.984 

0.0222 1.080 

0.0461 6.184 

0.0461 0.982 --
0.0475 1.716 

0.0331 0.991 



In (A) what is restored are not the rotation angles but 
rotation matrices. For evaluating the rotation angles we 
need decompose the matrices. (A1) and (81) are 
completely equivalent from mathematical point of view. 
But the results were a little bit different, probably due to 
the difference of definition of rotation angles. (A 1) takes 
less CPU time than (81). This may be because in (A1) a 
non-singular normal equation is solved, while in (81) a 
design matrix is singular-value-decomposed. 

Comparing (A1) with (A4) in which basis vectors are 
numerically constructed, we see the latter takes six 
times more CPU time than the former, since it singular 
-value-decomposes a large matrix. 

for the experiments on camera calibration. 
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corrections were made, we see therms error of residuals 
of image points coordinates in the latter is a little bit larger 
than in the former. This means the solutions in (AS) do not 
converge to the least squares solutions. Though its 
increase is very small in this experiment (from 0.402124 
to 0.402204), it is only because the initial values of object 
points coordinates are highly precise. For rough initial 
values, the deviation from least squares solutions is 
expected to be larger. 

The mean variances of unknown parameters varies with 
the methods used for rank defect compensation. The 
minimal mean variance of object points coordinates was 
attained at (A3), which is 48% of the pseudo inverse (A 1) 
and 67% of minimal constraints (82). (A3) can be easily 
solved by forming basis vectors analytically. 

The most practical method seems (82). The CPU time is 
small and that the resultant mean variance of object 
points coordinates is similar to that of (A 1 ). Further it can 
be used even if scale controls exist. 

6. Conclusions 

This paper discussed the construction of analytical basis 
vectors in the null space of a design matrix which has 
rank defects in close-range photogrammetry. The 
solutions are quite effectively calculated using the basis 
vectors as inner constraints. To keep the rotation 
matrices orthogonal, sequential corrections are 
performed to the resultant matrices every after least 
squares adjustment. This semi-analytical method is 
proved to take less CPU time than the conventional 
numerical method which calculates pseudo inverse. Its 
shortcomings are that rotation angles can not be restored 
directly and it does not produce strictly exact minimal 

norm solutions when scale controls exist. 
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